An accurate seizure prediction system enables early warnings before seizure onset of epileptic patients. It is extremely important for drug-refractory patients. Conventional seizure prediction works usually rely on features extracted from Electroencephalography (EEG) recordings and classification algorithms such as regression or support vector machine (SVM) to locate the short time before seizure onset. However, such methods cannot achieve high-accuracy prediction due to information loss of the hand-crafted features and the limited classification ability of regression and SVM algorithms. We propose an end-to-end deep learning solution using a convolutional neural network (CNN) in this paper. One and two dimensional kernels are adopted in the early- and late-stage convolution and max-pooling layers, respectively. The proposed CNN model is evaluated on Kaggle intracranial and CHB-MIT scalp EEG datasets. Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively. Comparison with state-of-the-art works indicates that the proposed model achieves exceeding prediction performance.
翻译:准确的缉获预测系统能够在癫痫病人癫痫病发作之前进行早期警报,这对药物耐药性病人极为重要。常规的缉获预测工作通常依靠从电脑造影(EEEG)记录和分类算法中提取的特征,如回归或支持矢量机(SVM)等,以定位发作前的短暂时间;然而,由于人工制作特征的信息丢失以及回归和SVM算法的分类能力有限,这类方法无法实现高准确性预测。我们提议在本文中使用一个脉冲神经网络(CNN),以最终到终端的深层次学习解决方案。在早期和后阶段的演进和最大集合层中分别采用了一和二维内核。拟议的CNN模型在Kagle内部和CHB-M-MIT头顶 EEG数据集上进行了评估。总体敏感度、虚假预测率和接收器操作特征曲线下的区域分别达到93.5%、0.063/h、0.981%和98.8 %、0.074/h、0.988在两个数据元模型上分别采用了1和0.988个维内,在两个数据元结构上分别采用了1和0.988内,在早期演中采用。比较了拟议的工作,从而实现了。与预期。比较了拟议的状态。