Divergence-free discontinuous Galerkin (DG) finite element methods offer a suitable discretization for the pointwise divergence-free numerical solution of Borrvall and Petersson's model for the topology optimization of fluids in Stokes flow [Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77--107]. The convergence results currently found in literature only consider $H^1$-conforming discretizations for the velocity. In this work, we extend the numerical analysis of Papadopoulos and S\"uli to divergence-free DG methods with an interior penalty [I. P. A. Papadopoulos and E. S\"uli, Numerical analysis of a topology optimization problem for Stokes flow, arXiv preprint arXiv:2102.10408, (2021)]. We show that, given an isolated minimizer to the analytical problem, there exists a sequence of DG finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to the minimizer.
翻译:文献中目前发现的无异性无异性加列尔金(DG)有限元素方法为Borrvall和Petersson的Stokes流流液体[Stokes流流液体的技术优化,《国际流体数字方法杂志》41(1)(2003年)77-107)的无异性分解数字解算法提供了合适的分解方法。文献中的趋同结果只考虑对速度的符合1美元。在这项工作中,我们把对Papadopoulos和S\“uli”的数值分析扩大到带有内部惩罚的无异性DG方法[I.P.A.Papadopoulos和E.S\'uli, Stokes流的表层优化问题数值分析,ArXiv print arXiv:2102.10.0408(2021)]。我们表明,由于与分析问题相隔绝的最小化,存在着一系列DG定元素解决方案,满足了必要的第一阶最佳性条件,与最小化者高度一致。