We provide a control-theoretic perspective on optimal tensor algorithms for minimizing a convex function in a finite-dimensional Euclidean space. Given a function $\Phi: \mathbb{R}^d \rightarrow \mathbb{R}$ that is convex and twice continuously differentiable, we study a closed-loop control system that is governed by the operators $\nabla \Phi$ and $\nabla^2 \Phi$ together with a feedback control law $\lambda(\cdot)$ satisfying the algebraic equation $(\lambda(t))^p\|\nabla\Phi(x(t))\|^{p-1} = \theta$ for some $\theta \in (0, 1)$. Our first contribution is to prove the existence and uniqueness of a local solution to this system via the Banach fixed-point theorem. We present a simple yet nontrivial Lyapunov function that allows us to establish the existence and uniqueness of a global solution under certain regularity conditions and analyze the convergence properties of trajectories. The rate of convergence is $O(1/t^{(3p+1)/2})$ in terms of objective function gap and $O(1/t^{3p})$ in terms of squared gradient norm. Our second contribution is to provide two algorithmic frameworks obtained from discretization of our continuous-time system, one of which generalizes the large-step A-HPE framework and the other of which leads to a new optimal $p$-th order tensor algorithm. While our discrete-time analysis can be seen as a simplification and generalization of~\citet{Monteiro-2013-Accelerated}, it is largely motivated by the aforementioned continuous-time analysis, demonstrating the fundamental role that the feedback control plays in optimal acceleration and the clear advantage that the continuous-time perspective brings to algorithmic design. A highlight of our analysis is that we show that all of the $p$-th order optimal tensor algorithms that we discuss minimize the squared gradient norm at a rate of $O(k^{-3p})$, which complements the recent analysis.


翻译:我们从控制理论角度来看待最优化的电离层算法, 以在有限维度 Euclidea 空间中最小化 convex 函数 。 如果函数 $\ Phi:\ mathbb{R ⁇ d\ rightrow\mathb{R} 美元, 并且两次持续不同, 我们研究一个由操作者 $\nabla\ Phi$ 和 $\nabla2\ Phi$ 管理的闭路控制系统。 我们展示了一个简单但非trivial Lyapunov 控制法 $( lambda (cdot)$ 满足升格方方程式 $( t)\\ p\ nabla\ Phi( x)(x)\ pip-1} =\\ t$, 由操作者管理者 $thalloadlooplooploopro 控制系统的存在和独特性分析 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
107+阅读 · 2020年12月21日
专知会员服务
50+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月27日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
107+阅读 · 2020年12月21日
专知会员服务
50+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员