We develop a space-time mortar mixed finite element method for parabolic problems. The domain is decomposed into a union of subdomains discretized with non-matching spatial grids and asynchronous time steps. The method is based on a space-time variational formulation that couples mixed finite elements in space with discontinuous Galerkin in time. Continuity of flux (mass conservation) across space-time interfaces is imposed via a coarse-scale space-time mortar variable that approximates the primary variable. Uniqueness, existence, and stability, as well as a priori error estimates for the spatial and temporal errors are established. A space-time non-overlapping domain decomposition method is developed that reduces the global problem to a space-time coarse-scale mortar interface problem. Each interface iteration involves solving in parallel space-time subdomain problems. The spectral properties of the interface operator and the convergence of the interface iteration are analyzed. Numerical experiments are provided that illustrate the theoretical results and the flexibility of the method for modeling problems with features that are localized in space and time.
翻译:我们为抛物线问题开发了一种时空迫击炮混合有限元素方法。 域被分解成一个与不匹配的空间网格和不同步的时间步骤分解的子域的组合。 方法基于一个时空变换配方, 即夫妇将空间中的有限元素与不连续的Galerkin时间混合在一起。 时空界面的通量( 质量保护) 的连续性( 质量保护) 是通过一个接近主要变量的粗略空间时空变数变量来决定的。 确定了空间和时间错误的独特性、 存在性和稳定性, 以及先验误差估计。 开发了一个时空不重叠域分解法, 将全球问题降低为时空的混集型迫击炮界面问题。 每个界面迭代相都涉及在时空平行的子域问题。 分析了界面操作器的光谱特性和界面相交融情况。 提供了数字实验,以说明空间和时空地点的特征模拟问题的方法的理论结果和灵活性。