Forensic license plate recognition (FLPR) remains an open challenge in legal contexts such as criminal investigations, where unreadable license plates (LPs) need to be deciphered from highly compressed and/or low resolution footage, e.g., from surveillance cameras. In this work, we propose a side-informed Transformer architecture that embeds knowledge on the input compression level to improve recognition under strong compression. We show the effectiveness of Transformers for license plate recognition (LPR) on a low-quality real-world dataset. We also provide a synthetic dataset that includes strongly degraded, illegible LP images and analyze the impact of knowledge embedding on it. The network outperforms existing FLPR methods and standard state-of-the art image recognition models while requiring less parameters. For the severest degraded images, we can improve recognition by up to 8.9 percent points.
翻译:法医牌照识别(FLPR)在刑事调查等法律背景下仍是一个公开的挑战,在刑事调查等法律背景下,无法读取的牌照(LP)需要从高度压缩和(或)低分辨率的镜头中解开,例如从监视摄像机中解开。在这项工作中,我们提议建立一个边际知情的变异器结构,将关于输入压缩水平的知识嵌入其中,以便在强烈压缩下提高识别程度。我们展示了变异器在低质量真实世界数据集上对牌照识别(LPR)的有效性。我们还提供了一个合成数据集,其中包括严重退化的、难以辨认的LP图像,并分析知识嵌入到它的影响。网络比现有的FLPRPR方法和标准艺术状态图像识别模型更差,同时要求较少参数。对于严重退化的图像,我们可以提高高达8.9%的识别点。