Understanding movies and their structural patterns is a crucial task in decoding the craft of video editing. While previous works have developed tools for general analysis, such as detecting characters or recognizing cinematography properties at the shot level, less effort has been devoted to understanding the most basic video edit, the Cut. This paper introduces the Cut type recognition task, which requires modeling multi-modal information. To ignite research in this new task, we construct a large-scale dataset called MovieCuts, which contains 173,967 video clips labeled with ten cut types defined by professionals in the movie industry. We benchmark a set of audio-visual approaches, including some dealing with the problem's multi-modal nature. Our best model achieves 47.7% mAP, which suggests that the task is challenging and that attaining highly accurate Cut type recognition is an open research problem. Advances in automatic Cut-type recognition can unleash new experiences in the video editing industry, such as movie analysis for education, video re-editing, virtual cinematography, machine-assisted trailer generation, machine-assisted video editing, among others. Our data and code are publicly available: https://github.com/PardoAlejo/MovieCuts}{https://github.com/PardoAlejo/MovieCuts.


翻译:理解电影及其结构模式是解码视频编辑手法的关键任务。 虽然先前的作品开发了一般分析工具, 如在镜头水平上检测字符或识别电影摄影特性, 但用于理解最基本的视频编辑“ Cut”。 本文介绍了 Cut 类型识别任务, 需要建模多模式信息。 为了点燃对这一新任务的研究, 我们建造了一个名为MoveCuts 的大型数据集, 包含173 967个视频剪辑, 标签由电影行业专业人员界定的10种剪辑。 我们为一套视听方法设定基准, 包括一些处理问题多模式性质的部分。 我们的最佳模型实现了47.7%的 mAP, 这表明这项任务具有挑战性, 实现高度准确的剪辑类型识别是一个开放的研究问题。 自动剪辑识别的进展可以释放视频编辑行业的新经验, 例如用于教育的电影分析、 视频重新编辑、虚拟电影摄影、 机器辅助拖车生成、 机器辅助视频编辑等。 我们的数据和代码可以公开查阅: https://Movie/Pleastoubas.

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员