Deep learning models have been widely used for anomaly detection in surveillance videos. Typical models are equipped with the capability to reconstruct normal videos and evaluate the reconstruction errors on anomalous videos to indicate the extent of abnormalities. However, existing approaches suffer from two disadvantages. Firstly, they can only encode the movements of each identity independently, without considering the interactions among identities which may also indicate anomalies. Secondly, they leverage inflexible models whose structures are fixed under different scenes, this configuration disables the understanding of scenes. In this paper, we propose a Hierarchical Spatio-Temporal Graph Convolutional Neural Network (HSTGCNN) to address these problems, the HSTGCNN is composed of multiple branches that correspond to different levels of graph representations. High-level graph representations encode the trajectories of people and the interactions among multiple identities while low-level graph representations encode the local body postures of each person. Furthermore, we propose to weightedly combine multiple branches that are better at different scenes. An improvement over single-level graph representations is achieved in this way. An understanding of scenes is achieved and serves anomaly detection. High-level graph representations are assigned higher weights to encode moving speed and directions of people in low-resolution videos while low-level graph representations are assigned higher weights to encode human skeletons in high-resolution videos. Experimental results show that the proposed HSTGCNN significantly outperforms current state-of-the-art models on four benchmark datasets (UCSD Pedestrian, ShanghaiTech, CUHK Avenue and IITB-Corridor) by using much less learnable parameters.


翻译:在监视录像中,深度学习模型被广泛用于异常现象的探测。典型模型配备了重建正常视频和评估异常视频重建错误的能力,以显示异常的程度。但是,现有方法有两个缺点。首先,它们只能独立编码每个身份的移动,而不考虑身份之间可能显示异常的相互作用。其次,它们利用结构在不同场景下固定的不灵活模型,这种配置阻碍对场景的了解。在本文中,我们提议建立一个高层次的Spatio-Timalal 动态神经网络(HSTGCNN)来解决这些问题,HSTGCNN由多个分支组成,这些分支与图表展示的不同级别相对应。高层次的图表显示人们的轨迹和多重身份之间的相互作用,而低层次的图形显示在不同的场景下固定的结构结构,我们提议对不同场景场的多个分支进行加权组合。在单一层次的图表展示中实现了对图像的理解,在高层次的图像中,在高层次的平面图像中,在高层次的平面图像中,在高层次的平面图像中,在高层次的平面图像中,在高层次的平面图示中,在高层次上,在高层次的平面图像中,在高层次的平面图像中,在高层次的平面图上,在高层次的平面图上,在高层次的平面图上,在高层次上,在高层次上,在高层次上,在高层次上,在高层次的平面图示图上,在高层次上,在高层次的平面图上,在高层次的平面图示中,在高的平面图示中,在高的平面图示中,在高的平面图示中,在高的平面图示中,在高的平面图示中,在高的平面图示中,在高的平面图示中,在高的平面图示中,在高的平面图上,在高的平面图上,在高的平面图上,在高的平面图上,在高的平面图上,在高的平面图上,在高的平面图上,在高的平面图上,在高的平面图上,在高的平面图上,在高的平

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
VIP会员
相关资讯
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员