项目名称: 测地流的动力学研究
项目编号: No.11301305
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 刘飞
作者单位: 山东科技大学
项目金额: 22万元
中文摘要: 测地流是动力系统和黎曼几何理论中的一个重要研究课题。本项目将重点研究紧致、无边界的黎曼流形上的测地流的动力学性质,涉及到动力系统、遍历论和黎曼几何等多个领域。具体为:1) 测地流的Liouville可积性及可积性的几何和拓扑障碍;2) Liouville可积测地流的拓扑熵和分数单值矩阵;3) 测地流的Liouville测度熵的正性和熵可扩性。我们提出了一系列彼此相关的研究问题,其中有些观点尚未见诸文献。这些问题的解决或者部分解决,将会使研究者们对测地流的动力学有更全面的认识,也能对多个相关学科的发展起到一定的推动作用。
中文关键词: 测地流;熵可扩性;遍历性;拓扑熵;无焦点流形
英文摘要: Geodesic flow is an important and active research field in dynamical systems and Riemannian geometry. In this project we will mainly study the dynamical aspects of geodesic flows on closed Riemannian manifolds, i.e., compact Riemannian manifolds without boundary. The research involves the theory of dynamical systems, ergodic theory and Riemannian geometry. More precisely, we will study the following problems: 1) Liouville integrability of geodesic flows, geometrical and topological obstructions to Liouville integrability of geodesic flows; 2) topological entropy and fractional monodromy of Liouville integrable geodesic flows; 3) positivity of Liouville measure-theoretic entropy and entropy-expansiveness of geodesic flows. We pose a series related research questions, and some of them have not yet appeared in the literature. Answers or partial answers to these questions will help researchers to get a more comprehensive understanding of the dynamics of geodesic flows and will play an active driving role of the development of related subjects.
英文关键词: geodesic flows;entropy-expansiveness;ergodicity;topological entropy;manifolds without focal points