We propose an isogeometric mortar method to fourth order elliptic problems. In particular we are interested in the discretization of the biharmonic equation on $C^0$-conforming multi-patch domains and we exploit the mortar technique to weakly enforce $C^1$-continuity across interfaces. In order to obtain discrete inf-sup stability, a particular choice for the Lagrange multiplier space is needed. Actually, we use as multipliers splines of degree reduced by two, w.r.t. the primal spline space, and with merged elements in the neighbourhood of the corners. In this framework, we are able to show optimal a priori error estimates. We also perform numerical tests that reflect theoretical results.
翻译:我们建议对第四级椭圆形问题采用等离子测量迫击炮方法。 我们特别关心在符合C$0美元的多批域上分离双调方程式的问题,我们利用迫击炮技术在界面上微弱地执行$C$1$-连续。为了获得离异的内侧稳定性,需要为拉格朗的乘数空间做出一个特殊的选择。事实上,我们把原始样板空间作为乘数样条,减少两个(w.r.t.),在角的邻近地区使用混合元素。在这个框架内,我们能够显示最佳的先验误差估计。我们还进行数字测试,以反映理论结果。</s>