Partitioning the vertices of a (hyper)graph into k roughly balanced blocks such that few (hyper)edges run between blocks is a key problem for large-scale distributed processing. A current trend for partitioning huge (hyper)graphs using low computational resources are streaming algorithms. In this work, we propose FREIGHT: a Fast stREamInG Hypergraph parTitioning algorithm which is an adaptation of the widely-known graph-based algorithm Fennel. By using an efficient data structure, we make the overall running of FREIGHT linearly dependent on the pin-count of the hypergraph and the memory consumption linearly dependent on the numbers of nets and blocks. The results of our extensive experimentation showcase the promising performance of FREIGHT as a highly efficient and effective solution for streaming hypergraph partitioning. Our algorithm demonstrates competitive running time with the Hashing algorithm, with a difference of a maximum factor of four observed on three fourths of the instances. Significantly, our findings highlight the superiority of FREIGHT over all existing (buffered) streaming algorithms and even the in-memory algorithm HYPE, with respect to both cut-net and connectivity measures. This indicates that our proposed algorithm is a promising hypergraph partitioning tool to tackle the challenge posed by large-scale and dynamic data processing.


翻译:将一个(超级)图的顶端分割成一个大致平衡的区块, 使区块之间运行的( 超级) 很少( 超级) 的顶部成为大型分布式处理的关键问题。 目前使用低计算资源分割巨型( 高) 的倾向是流算法。 在这项工作中, 我们提议 Freight: 快速 strreamInG 高射速测算法, 这是对广受欢迎的基于图形的算法 Fenneel 的调整。 通过使用高效的数据结构, 我们使FREight的总体运行线性地依赖于高射线和内存消耗的直线性取决于网和区的数目。 我们广泛实验的结果展示了FREight作为流高射速隔断的高效和有效解决方案的前景。 我们的算法展示了与Hashing算法的竞争运行时间, 在四分之三的事例中观察到了四个最大系数的差别。 重要的是, 我们的发现显示FREight相对于所有现有( 缓冲) 流算法和内存消耗量消耗量消耗量的线的线上取决于网和区块的数目。 我们的大规模移动算算算法 显示, 向具有前景的系统的高度分析工具的高度分析 向上显示, 向有希望的高度分析工具的高度分析法 。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
20+阅读 · 2021年9月22日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员