We introduce the notion of a quantum trapdoor function. This is an efficiently computable unitary that takes as input a "public" quantum state and a classical string $x$, and outputs a quantum state. This map is such that (i) it is hard to invert, in the sense that it is hard to recover $x$ given the output state (and many copies of the public state), and (ii) there is a classical trapdoor that allows efficient inversion. We show that a quantum trapdoor function can be constructed from any quantum-secure one-way function. A direct consequence of this result is that, assuming just the existence of quantum-secure one-way functions, there exist: (i) a public-key encryption scheme with a quantum public key, and (ii) a two-message key-exchange protocol, assuming an appropriate notion of a quantum authenticated channel.
翻译:我们引入了量子捕捉器功能的概念。 这是一个高效的可计算单元, 以“ 公共” 量子状态和经典弦 $x$, 并输出量子状态为输入值。 这个地图显示 (一) 很难反转, 因为鉴于输出状态( 和公共状态的许多副本), 很难收回美元, 并且 (二) 有一种允许有效反转的经典捕捉器。 我们显示, 量子捕捉器功能可以从任何量子安全单向函数中构建。 这个结果的直接后果是, 假设存在量子安全的单向函数, 就会存在:(一) 带有量子公用钥匙的公用钥匙加密计划, 以及 (二) 双波调钥匙交换协议, 假设量子验证通道的适当概念 。</s>