Fully Homomorphic Encryption (FHE), a novel cryptographic theory enabling computation directly on ciphertext data, offers significant security benefits but is hampered by substantial performance overhead. In recent years, a series of accelerator designs have significantly enhanced the performance of FHE applications, bringing them closer to real-world applicability. However, these accelerators face challenges related to large on-chip memory and area. Additionally, FHE algorithms undergo rapid development, rendering the previous accelerator designs less perfectly adapted to the evolving landscape of optimized FHE applications. In this paper, we conducted a detailed analysis of existing applications with the new FHE method, making two key observations: 1) the bottleneck of FHE applications shifts from NTT to the inner-product operation, and 2) the optimal {\alpha} of KeySwitch changes with the decrease in multiplicative level. Based on these observations, we designed an accelerator named Taiyi, which includes specific hardware for the inner-product operation and optimizes the NTT and BConv operations through algorithmic derivation. A comparative evaluation of Taiyi against previous state-of-the-art designs reveals an average performance improvement of 1.5x and reduces the area overhead by 15.7%.
翻译:暂无翻译