The performance of local feature descriptors degrades in the presence of large rotation variations. To address this issue, we present an efficient approach to learning rotation invariant descriptors. Specifically, we propose Rotated Kernel Fusion (RKF) which imposes rotations on the convolution kernel to improve the inherent nature of CNN. Since RKF can be processed by the subsequent re-parameterization, no extra computational costs will be introduced in the inference stage. Moreover, we present Multi-oriented Feature Aggregation (MOFA) which aggregates features extracted from multiple rotated versions of the input image and can provide auxiliary knowledge for the training of RKF by leveraging the distillation strategy. We refer to the distilled RKF model as DRKF. Besides the evaluation on a rotation-augmented version of the public dataset HPatches, we also contribute a new dataset named DiverseBEV which is collected during the drone's flight and consists of bird's eye view images with large viewpoint changes and camera rotations. Extensive experiments show that our method can outperform other state-of-the-art techniques when exposed to large rotation variations.
翻译:暂无翻译