Cervical cancer is a major cause of cancer-related mortality among women worldwide, and its survival rate improves significantly with early detection. Traditional diagnostic methods such as Pap smears and cervical biopsies rely heavily on cytologist expertise, making the process prone to human error. This study introduces CerviXpert, a multi-structural convolutional neural network model designed to efficiently classify cervix types and detect cervical cell abnormalities. CerviXpert is built as a computationally efficient model that classifies cervical cancer using images from the publicly available SiPaKMeD dataset. The model architecture emphasizes simplicity, using a limited number of convolutional layers followed by max pooling and dense layers, trained from scratch. We assessed the performance of CerviXpert against other state of the art convolutional neural network models including ResNet50, VGG16, MobileNetV2, and InceptionV3, evaluating them on accuracy, computational efficiency, and robustness using five fold cross validation. CerviXpert achieved an accuracy of 98.04 percent in classifying cervical cell abnormalities into three classes and 98.60 percent for five class cervix type classification, outperforming MobileNetV2 and InceptionV3 in both accuracy and computational requirements. It showed comparable results to ResNet50 and VGG16 while reducing computational complexity and resource needs. CerviXpert provides an effective solution for cervical cancer screening and diagnosis, balancing accuracy with computational efficiency. Its streamlined design enables deployment in resource constrained environments, potentially enhancing early detection and management of cervical cancer.
翻译:暂无翻译