3D single object tracking (SOT) is an indispensable part of automated driving. Existing approaches rely heavily on large, densely labeled datasets. However, annotating point clouds is both costly and time-consuming. Inspired by the great success of cycle tracking in unsupervised 2D SOT, we introduce the first semi-supervised approach to 3D SOT. Specifically, we introduce two cycle-consistency strategies for supervision: 1) Self tracking cycles, which leverage labels to help the model converge better in the early stages of training; 2) forward-backward cycles, which strengthen the tracker's robustness to motion variations and the template noise caused by the template update strategy. Furthermore, we propose a data augmentation strategy named SOTMixup to improve the tracker's robustness to point cloud diversity. SOTMixup generates training samples by sampling points in two point clouds with a mixing rate and assigns a reasonable loss weight for training according to the mixing rate. The resulting MixCycle approach generalizes to appearance matching-based trackers. On the KITTI benchmark, based on the P2B tracker, MixCycle trained with $\textbf{10%}$ labels outperforms P2B trained with $\textbf{100%}$ labels, and achieves a $\textbf{28.4%}$ precision improvement when using $\textbf{1%}$ labels. Our code will be publicly released.
翻译:3D 单对象跟踪 (SOT) 是自动驱动的一个不可或缺的部分 。 现有方法高度依赖大型、 密集标签的数据集 。 但是, 点点云既昂贵又耗时。 由于在未监督的 2D SOT 中循环跟踪非常成功, 我们引入了第一个半监督的 3D SOT 监督策略 。 具体地说, 我们引入了两种周期一致的监管战略 :(1) 自我跟踪周期, 利用标签标签来帮助模型在培训的早期阶段更好地聚合; (2) 前向后向周期, 加强了跟踪器对运动变异和模板更新战略引发的模板噪音的稳健性。 此外, 我们提议了一个名为 SOTMixup 的数据增强战略, 以提高跟踪器对云多样性的稳健性。 SOTMixupit 通过两点的取样, 混合率, 并根据混合率为培训分配合理的损失重量 。 由此产生的 MixClecle 方法将显示匹配的跟踪器。 在基于标签 P2B 准确$100\\ b 校正 以 $ 美元 的标签, MTMlexx 和 $Creglexxx 。</s>