We study how to set channel numbers in a neural network to achieve better accuracy under constrained resources (e.g., FLOPs, latency, memory footprint or model size). A simple and one-shot solution, named AutoSlim, is presented. Instead of training many network samples and searching with reinforcement learning, we train a single slimmable network to approximate the network accuracy of different channel configurations. We then iteratively evaluate the trained slimmable model and greedily slim the layer with minimal accuracy drop. By this single pass, we can obtain the optimized channel configurations under different resource constraints. We present experiments with MobileNet v1, MobileNet v2, ResNet-50 and RL-searched MNasNet on ImageNet classification. We show significant improvements over their default channel configurations. We also achieve better accuracy than recent channel pruning methods and neural architecture search methods. Notably, by setting optimized channel numbers, our AutoSlim-MobileNet-v2 at 305M FLOPs achieves 74.2% top-1 accuracy, 2.4% better than default MobileNet-v2 (301M FLOPs), and even 0.2% better than RL-searched MNasNet (317M FLOPs). Our AutoSlim-ResNet-50 at 570M FLOPs, without depthwise convolutions, achieves 1.3% better accuracy than MobileNet-v1 (569M FLOPs). Code and models will be available at: https://github.com/JiahuiYu/slimmable_networks


翻译:我们研究如何在一个神经网络中设置频道数字,以便在有限的资源(例如,FLOPs、延缓度、记忆足迹或模型大小)下实现更准确性。 演示了一个简单和一发的解决方案,名为AutoSlim。 我们不是培训许多网络样本,而是通过强化学习搜索,而是训练一个单薄网络,以近似不同频道配置的网络准确性。 然后我们迭接地评估经过训练的微薄模型,并尽量降低精确性。 通过这个单一通道,我们可以在不同的资源限制下获得优化的频道配置。 我们在图像网络分类上使用移动Net v1, MobNet2, MobtNet2, ResNet-50和RL-Searched MNAsNet的实验。 我们的默认频道配置有了显著改进。 我们还比最近的频道运行方法和神经架构搜索方法更精确。 值得注意的是,我们在305M FLOP/FLOPs 上设置了最佳频道数字, 我们的AutSlim-MobleNet2, 顶级的准确性为72%, 比默认的移动网络2 (301M-FLOP-50) 的精确度更好。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
重磅!MobileNetV3 来了!
计算机视觉life
4+阅读 · 2019年5月11日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
8+阅读 · 2020年3月30日
Arxiv
5+阅读 · 2020年3月26日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
重磅!MobileNetV3 来了!
计算机视觉life
4+阅读 · 2019年5月11日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
8+阅读 · 2020年3月30日
Arxiv
5+阅读 · 2020年3月26日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员