We introduce a new model of combinatorial contracts in which a principal delegates the execution of a costly task to an agent. To complete the task, the agent can take any subset of a given set of unobservable actions, each of which has an associated cost. The cost of a set of actions is the sum of the costs of the individual actions, and the principal's reward as a function of the chosen actions satisfies some form of diminishing returns. The principal incentivizes the agents through a contract, based on the observed outcome. Our main results are for the case where the task delegated to the agent is a project, which can be successful or not. We show that if the success probability as a function of the set of actions is gross substitutes, then an optimal contract can be computed with polynomially many value queries, whereas if it is submodular, the optimal contract is NP-hard. All our results extend to linear contracts for higher-dimensional outcome spaces, which we show to be robustly optimal given first moment constraints. Our analysis uncovers a new property of gross substitutes functions, and reveals many interesting connections between combinatorial contracts and combinatorial auctions, where gross substitutes is known to be the frontier for efficient computation.


翻译:我们引入了一种新的组合合同模式, 由一位主要代表执行一个代理人的昂贵任务。 为了完成任务, 代理人可以采取一组特定不可观察的行动的任何子集, 每个行动都有连带成本。 一组行动的成本是单项行动成本的总和, 而本金作为选定行动的一个函数的奖赏则满足了某种形式的递减回报。 主要的激励方式是根据观察到的结果, 通过合同激励代理人。 我们的主要结果就是委托代理人执行的项目是有可能成功或不成功的项目。 我们表明,如果作为一组行动的一个功能的成功概率是毛替代, 那么一项最佳合同可以用多种价值的询问来计算, 而如果是子模块化的, 最优合同是硬的。 我们的所有结果都延伸到了更高层次结果空间的线性合同, 我们显示出在最初的制约下, 我们表现出了最强的优势。 我们的分析揭示了一种完全替代功能的新属性, 并揭示了组合式合同和组合式边界之间的许多有趣的联系, 在那里已知的毛代代价是高效的计算。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
已删除
将门创投
3+阅读 · 2019年11月25日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月18日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
31+阅读 · 2020年9月21日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年11月25日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月18日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
31+阅读 · 2020年9月21日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Top
微信扫码咨询专知VIP会员