Uncertainty estimation of trained deep learning networks is valuable for optimizing learning efficiency and evaluating the reliability of network predictions. In this paper, we propose a method for estimating uncertainty in deep learning image classification using test-time mixup augmentation (TTMA). To improve the ability to distinguish correct and incorrect predictions in existing aleatoric uncertainty, we introduce TTMA data uncertainty (TTMA-DU) by applying mixup augmentation to test data and measuring the entropy of the predicted label histogram. In addition to TTMA-DU, we propose TTMA class-specific uncertainty (TTMA-CSU), which captures aleatoric uncertainty specific to individual classes and provides insight into class confusion and class similarity within the trained network. We validate our proposed methods on the ISIC-18 skin lesion diagnosis dataset and the CIFAR-100 real-world image classification dataset. Our experiments show that (1) TTMA-DU more effectively differentiates correct and incorrect predictions compared to existing uncertainty measures due to mixup perturbation, and (2) TTMA-CSU provides information on class confusion and class similarity for both datasets.
翻译:暂无翻译