The ROC curve is the gold standard for measuring the performance of a test/scoring statistic regarding its capacity to discriminate between two statistical populations in a wide variety of applications, ranging from anomaly detection in signal processing to information retrieval, through medical diagnosis. Most practical performance measures used in scoring/ranking applications such as the AUC, the local AUC, the p-norm push, the DCG and others, can be viewed as summaries of the ROC curve. In this paper, the fact that most of these empirical criteria can be expressed as two-sample linear rank statistics is highlighted and concentration inequalities for collections of such random variables, referred to as two-sample rank processes here, are proved, when indexed by VC classes of scoring functions. Based on these nonasymptotic bounds, the generalization capacity of empirical maximizers of a wide class of ranking performance criteria is next investigated from a theoretical perspective. It is also supported by empirical evidence through convincing numerical experiments.
翻译:RCC曲线是衡量测试/分类统计在多种应用中区分两个统计人口的能力的黄金标准,从信号处理中的异常检测到信息检索,到医学诊断,在评分/排名应用中使用的大多数实际业绩计量,如ACC、当地AUC、P-crum 推力、DCG等,可视为ROC曲线的概要。在本文件中,这些经验标准大多可以以双表线级统计来表示,在用VC评分功能等级指数化时,可以证明这里称为两表级的随机变量收集的集中不平等。根据这些非标准界限,从理论角度对广泛等级业绩标准的经验最大化者的一般能力进行下一个调查。通过令人信服的数字实验,也证实了这些经验性证据。