A new method for estimating the conditional average treatment effect is proposed in the paper. It is called TNW-CATE (the Trainable Nadaraya-Watson regression for CATE) and based on the assumption that the number of controls is rather large whereas the number of treatments is small. TNW-CATE uses the Nadaraya-Watson regression for predicting outcomes of patients from the control and treatment groups. The main idea behind TNW-CATE is to train kernels of the Nadaraya-Watson regression by using a weight sharing neural network of a specific form. The network is trained on controls, and it replaces standard kernels with a set of neural subnetworks with shared parameters such that every subnetwork implements the trainable kernel, but the whole network implements the Nadaraya-Watson estimator. The network memorizes how the feature vectors are located in the feature space. The proposed approach is similar to the transfer learning when domains of source and target data are similar, but tasks are different. Various numerical simulation experiments illustrate TNW-CATE and compare it with the well-known T-learner, S-learner and X-learner for several types of the control and treatment outcome functions. The code of proposed algorithms implementing TNW-CATE is available in https://github.com/Stasychbr/TNW-CATE.
翻译:本文中提出了一种评估有条件平均治疗效应的新方法,称为TNW-CATE(CATE可培训的Nadaraya-Watson回归),其依据的假设是,控制的数量相当大,而治疗的数量却很小。TNW-CATE使用Nadaraya-Watson回归法来预测控制和治疗组病人的结果。TNW-CATE的主要想法是利用一种特定形式的权重共享神经网络来培训Nadaraya-Watson回归的内核。该网络接受控制培训,并用一套具有共同参数的神经亚网络取代标准内核内核。每个子网络都使用可培训的内核,但整个网络使用Nadaraya-Watsons回归法来预测控制和控制控制来自控制和治疗组的Nadaraya-Watsons;TNW-WA-Watson sestormation如何定位于地段。拟议的方法与在源域和目标数据相似时的转移学习方法相似,但任务不同。各种数字模拟实验在TNWA-CATE中说明T-CATE中说明T-Trainal-Traineral 并比较了拟议的X-trainal 和对结果的几种控制的可操作。