Improving the resilience of a network protects the system from natural disasters and malicious attacks. This is typically achieved by introducing new edges, which however may reach beyond the maximum number of connections a node could sustain. Many studies then resort to the degree-preserving operation of rewiring, which swaps existing edges $AC, BD$ to new edges $AB, CD$. A significant line of studies focuses on this technique for theoretical and practical results while leaving three limitations: network utility loss, local optimality, and transductivity. In this paper, we propose ResiNet, a reinforcement learning (RL)-based framework to discover resilient network topologies against various disasters and attacks. ResiNet is objective agnostic which allows the utility to be balanced by incorporating it into the objective function. The local optimality, typically seen in greedy algorithms, is addressed by casting the cumulative resilience gain into a sequential decision process of step-wise rewiring. The transductivity, which refers to the necessity to run a computationally intensive optimization for each input graph, is lifted by our variant of RL with auto-regressive permutation-invariant variable action space. ResiNet is armed by our technical innovation, Filtration enhanced GNN (FireGNN), which distinguishes graphs with minor differences. It is thus possible for ResiNet to capture local structure changes and adapt its decision among consecutive graphs, which is known to be infeasible for GNN. Extensive experiments demonstrate that with a small number of rewiring operations, ResiNet achieves a near-optimal resilience gain on multiple graphs while balancing the utility, with a large margin compared to existing approaches.


翻译:提高网络的抗御能力可以保护系统免受自然灾害和恶意攻击。 通常通过引入新边缘来实现, 但这些边缘可能超过节点能够维持的网络的最大连接数量。 许多研究随后会采用再线的高度保全操作, 将现有边缘交换为美元AC, BD$到新边缘交换 $AB, CD$。 大量研究侧重于这一理论和实践结果技术, 并留下三个局限性: 网络功用损失、 地方最佳性和转动性。 在本文中, 我们提议 ResiNet, 一个基于强化学习( RL) 的框架, 以发现有弹性的网络顶点, 以发现应对各种灾害和攻击的网络顶点。 ResiNet是目标性隐蔽操作, 将现有边际的边际操作转换为平衡, 将它纳入目标功能功能功能。 通常以贪婪的算法方式将累积的复原力增益纳入一步态再接线的决策进程。 移动性是指对每个输入图进行计算强化的精度优化, 由我们用自动递增的流流流流流流化的网络操作法, 和不断变的内变的内变的内变的内变法, 系统变的内变的内变法性变法将它将使得系统变的内变的内变法性变法性变法, 的内变法性变法性变的内变的内变的内变的内变法,, 的内变的内变法将可变法, 的内变的内变的内变的内变法性变法性变法性变法性变法性能将它能将它能将它能将它能将使得的内变的内变的内变的内变法, 的内变的内变的内变的内变的内变的内变的内变的内变的内变的内变的内变法, 的内变的内变的内变法, 的内变法, 的内变的内变法性能性能性能性变法性变的内变的内变的内变的内变的内变的内变的内变的内变的内变的内变法性变法性能性变法性能性能性能性能性

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月11日
Arxiv
7+阅读 · 2021年7月5日
Arxiv
7+阅读 · 2021年5月13日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
5+阅读 · 2020年3月16日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年12月11日
Arxiv
7+阅读 · 2021年7月5日
Arxiv
7+阅读 · 2021年5月13日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
5+阅读 · 2020年3月16日
Top
微信扫码咨询专知VIP会员