Speech translation (ST) systems translate speech in one language to text in another language. End-to-end ST systems (e2e-ST) have gained popularity over cascade systems because of their enhanced performance due to reduced latency and computational cost. Though resource intensive, e2e-ST systems have the inherent ability to retain para and non-linguistic characteristics of the speech unlike cascade systems. In this paper, we propose to use an e2e architecture for English-Hindi (en-hi) ST. We use two imperfect machine translation (MT) services to translate Libri-trans en text into hi text. While each service gives MT data individually to generate parallel ST data, we propose a data augmentation strategy of noisy MT data to aid robust ST. The main contribution of this paper is the proposal of a data augmentation strategy. We show that this results in better ST (BLEU score) compared to brute force augmentation of MT data. We observed an absolute improvement of 1.59 BLEU score with our approach.


翻译:---- 语音翻译系统将一种语言的语音翻译成另一种语言的文本。端到端语音翻译系统(e2e-ST)由于降低了延迟和计算成本而比级联系统更受欢迎。尽管资源密集,但e2e-ST系统具有保留语音的嵌入式和非语言特征的固有能力,而不像级联系统。在本文中,我们提出使用一个e2e架构进行英语-印地语(en-hi)语音翻译。我们使用两个不完善的机器翻译(MT)服务将Libri-trans en文本翻译成hi文本。虽然每个服务单独提供MT数据以生成并行ST数据,但我们提出了嘈杂MT数据的数据增强策略来帮助实现抗干扰ST。本文的主要贡献在于提出数据增强策略。我们表明,与MT数据的暴力增强相比,这导致更好的ST(BLEU分数)。我们观察到我们的方法在BLEU分数上实现了1.59分的绝对改进。

0
下载
关闭预览

相关内容

通过计算机进行不同语言之间的直接语音翻译,辅助不同语言背景的人们进行沟通已经成为世界各国研究的重点。 和一般的文本翻译不同,语音翻译需要把语音识别、机器翻译和语音合成三大技术进行集成,具有很大的挑战性。
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月23日
A Survey on Data Augmentation for Text Classification
VIP会员
相关VIP内容
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员