The growth in variable renewables such as solar and wind is increasing the impact of climate uncertainty in energy system planning. Addressing this ideally requires high-resolution time series spanning at least a few decades. However, solving capacity expansion planning models across such datasets often requires too much computing time or memory. To reduce computational cost, users often employ time series aggregation to compress demand and weather time series into a smaller number of time steps. Methods are usually a priori, employing information about the input time series only. Recent studies highlight the limitations of this approach, since reducing statistical error metrics on input time series does not in general lead to more accurate model outputs. Furthermore, many aggregation schemes are unsuitable for models with storage since they distort chronology. In this paper, we introduce a posteriori time series aggregation schemes for models with storage. Our methods adapt to the underlying energy system model; aggregation may differ in systems with different technologies or topologies even with the same time series inputs. Furthermore, they preserve chronology and hence allow modelling of storage technologies. We investigate a number of approaches. We find that a posteriori methods can perform better than a priori ones, primarily through a systematic identification and preservation of relevant extreme events. We hope that these tools render long demand and weather time series more manageable in capacity expansion planning studies. We make our models, data, and code publicly available.
翻译:太阳能和风能等可变可再生能源的增长正在增加能源系统规划中气候不确定性的影响。 解决这个问题最理想的是需要至少几十年的高分辨率时间序列。 然而,解决这些数据集的能力扩展规划模型往往需要过多的计算时间或记忆。 为了降低计算成本,用户往往使用时间序列汇总将需求和天气时间序列压缩到较少的时间步骤中。 方法通常是先验的,只使用输入时间序列的信息。 最近的研究强调了这一方法的局限性,因为减少投入时间序列中的统计误差指标一般不会导致更准确的模型产出。 此外,许多集成计划不适合存储模型的模型,因为它们扭曲了时间顺序。 在本文中,我们为存储模型引入了后序时间序列汇总计划。我们的方法适应了基本能源系统模型;在使用不同技术的系统中,或即使有相同的时间序列投入,汇总也可能有所不同。此外,它们保存了时间序列,从而允许对存储技术进行建模。 我们调查了一些方法。 我们发现,后序方法可以比先前的存储模型更好,因为它们扭曲了时间序列,我们主要通过系统化的天气规划模型,我们更需要一种可理解的极端的数据。