There is continuing interest in the investigation of change in temperature over space and time. We offer a set of tools to illuminate such change temporally, at desired temporal resolution, and spatially, according to region of interest, using data generated from suitable space-time models. These tools include predictive spatial probability surfaces and spatial extents for an event. Working with exceedance events around the center of the temperature distribution, the probability surfaces capture the spatial variation in the risk of an exceedance event, while the spatial extents capture the expected proportion of incidence of a given exceedance event for a region of interest. Importantly, the proposed tools can be used with the output from any suitable model fitted to any set of spatially referenced time series data. As an illustration, we employ a dataset from 1956 to 2015 collected at 18 stations over Arag\'{o}n in Spain, and a collection of daily maximum temperature series obtained from posterior predictive simulation of a Bayesian hierarchical daily temperature model. The results for the summer period show that although there is an increasing risk in all the events used to quantify the effects of climate change, it is not spatially homogeneous, with the largest increase arising in the center of Ebro valley and Eastern Pyrenees area. The risk of an increase of the average temperature between 1966-1975 and 2006-2015 higher than $1^\circ$C is higher than 0.5 all over the region, and close to 1 in the previous areas. The extent of daily temperature higher than the reference mean has increased 3.5% per decade. The mean of the extent indicates that 95% of the area under study has suffered a positive increment of the average temperature, and almost 70% higher than $1^{\circ}$C.
翻译:继续关注对时空温度变化的调查。 我们提供了一系列工具, 利用适当空间时间模型生成的数据, 利用适当空间时间模型生成的数据, 以时间、 期望的时间分辨率和空间的方式, 以空间方式, 根据感兴趣的区域, 实时、 和空间的方式, 展示这种变化。 这些工具包括: 预测空间概率表面和事件的空间范围。 在温度分布中心周围发生超常事件时, 概率表面可以捕捉超常事件风险的空间变化, 而空间范围可以捕捉到某一相关区域的超常事件的预期比例。 重要的是, 任何适合模型的输出, 都可用于几乎空间引用的时间序列数据。 举例而言, 我们使用1956年至2015年在西班牙阿拉格( Arag) {o}18个站收集的数据集, 以及从Bayes日级温度模型的海平面预测模拟中收集的每日最高温度序列。 夏季的结果显示, 虽然用于量化气候变化影响的所有事件的风险都增加了。 重要的是, 任何适合空间温度值模型的输出值范围, 几乎与任何一组空间引用的时间范围 70- 19年时间序列序列序列数据的数据范围, 在Er 10 平均温度中心之间, 上升区域中, 上升 上升区域 上升区域 上升区域 平均温度增加为 。