Head generation with diverse identities is an important task in computer vision and computer graphics, widely used in multimedia applications. However, current full head generation methods require a large number of 3D scans or multi-view images to train the model, resulting in expensive data acquisition cost. To address this issue, we propose Head3D, a method to generate full 3D heads with limited multi-view images. Specifically, our approach first extracts facial priors represented by tri-planes learned in EG3D, a 3D-aware generative model, and then proposes feature distillation to deliver the 3D frontal faces into complete heads without compromising head integrity. To mitigate the domain gap between the face and head models, we present dual-discriminators to guide the frontal and back head generation, respectively. Our model achieves cost-efficient and diverse complete head generation with photo-realistic renderings and high-quality geometry representations. Extensive experiments demonstrate the effectiveness of our proposed Head3D, both qualitatively and quantitatively.
翻译:多样化的身份认证是计算机视觉和计算机图形学中的重要任务,在多媒体应用中被广泛应用。然而,当前的全头部生成方法需要大量的3D扫描或多视图图像来训练模型,导致高昂的数据获取成本。为解决这个问题,我们提出了Head3D方法,可以使用有限的多视图图像生成完整的三维头部。具体来说,我们的方法首先提取由EG3D中学习的三面体表示的面部先验信息,然后提出特征蒸馏将3D正面面孔传递到完整的头部不损失头部的完整性。为了减轻面部和头部模型之间的域差异,我们提出了双判别器来分别指导正面和背面头部的生成。我们的模型通过逼真的渲染和高质量的几何表示,实现了经济高效和多样化的完整头部生成。广泛的实验证明了我们提出的Head3D的有效性,无论是定性还是定量的。