Deep functional map frameworks are widely employed for 3D shape matching. However, most existing deep functional map methods cannot adaptively capture important frequency information for functional map estimation in specific matching scenarios, i.e., lacking \textit{frequency awareness}, resulting in poor performance when dealing with large deformable shape matching. To this end, we propose a novel unsupervised learning-based framework called Deep Frequency-Aware Functional Maps, which can gracefully cope with various shape matching scenarios. We first introduce a general constraint called Spectral Filter Operator Preservation to compute desirable functional maps, where the spectral filter operator encodes informative frequency information and can promote frequency awareness for deep functional map frameworks by learning a set of filter functions. Then, we directly utilize the proposed constraint as a loss function to supervise functional maps, pointwise maps, and filter functions simultaneously, where the filter functions are derived from the orthonormal Jacobi basis, and the coefficients of the basis are learnable parameters. Finally, we develop an effective refinement strategy to improve the final pointwise map, which incorporates our constraint and learned filter functions, leading to more robust and accurate correspondences during the inference process. Extensive experimental results on various datasets demonstrate that our approach outperforms the existing state-of-the-art methods, especially in challenging settings like datasets with non-isometric deformation and inconsistent topology.
翻译:暂无翻译