Graph is a highly generic and diverse representation, suitable for almost any data processing problem. Spectral graph theory has been shown to provide powerful algorithms, backed by solid linear algebra theory. It thus can be extremely instrumental to design deep network building blocks with spectral graph characteristics. For instance, such a network allows the design of optimal graphs for certain tasks or obtaining a canonical orthogonal low-dimensional embedding of the data. Recent attempts to solve this problem were based on minimizing Rayleigh-quotient type losses. We propose a different approach of directly learning the eigensapce. A severe problem of the direct approach, applied in batch-learning, is the inconsistent mapping of features to eigenspace coordinates in different batches. We analyze the degrees of freedom of learning this task using batches and propose a stable alignment mechanism that can work both with batch changes and with graph-metric changes. We show that our learnt spectral embedding is better in terms of NMI, ACC, Grassman distance, orthogonality and classification accuracy, compared to SOTA. In addition, the learning is more stable.
翻译:图形是一个非常通用和多样的表达方式, 几乎适合任何数据处理问题。 光谱图形理论已被显示为提供了强大的算法, 以固体线性代数理论为后盾。 因此, 它对于设计具有光谱图形特征的深网络构件极为有用。 例如, 这种网络允许为某些任务设计最佳图形, 或为某些任务获得一个光学正方形低维嵌入数据。 最近解决这一问题的尝试是以尽量减少Rayleigh- 夸脱型损失为基础的。 我们提出了一种不同的方法, 直接学习eigensapce 。 在批量学习中, 直接方法的一个严重问题是不同批量地对eigen空间坐标的特征进行不一致的绘图。 我们使用批量分析这一任务的自由度, 并提议一个稳定的调整机制, 既可以配合批量变化,也可以配合图形度变化。 我们显示, 我们所学的光谱嵌入比SOTA更好的方法。 此外, 学习更加稳定。