Hypergraph, an expressive structure with flexibility to model the higher-order correlations among entities, has recently attracted increasing attention from various research domains. Despite the success of Graph Neural Networks (GNNs) for graph representation learning, how to adapt the powerful GNN-variants directly into hypergraphs remains a challenging problem. In this paper, we propose UniGNN, a unified framework for interpreting the message passing process in graph and hypergraph neural networks, which can generalize general GNN models into hypergraphs. In this framework, meticulously-designed architectures aiming to deepen GNNs can also be incorporated into hypergraphs with the least effort. Extensive experiments have been conducted to demonstrate the effectiveness of UniGNN on multiple real-world datasets, which outperform the state-of-the-art approaches with a large margin. Especially for the DBLP dataset, we increase the accuracy from 77.4\% to 88.8\% in the semi-supervised hypernode classification task. We further prove that the proposed message-passing based UniGNN models are at most as powerful as the 1-dimensional Generalized Weisfeiler-Leman (1-GWL) algorithm in terms of distinguishing non-isomorphic hypergraphs. Our code is available at \url{https://github.com/OneForward/UniGNN}.
翻译:具有灵活性的显微图结构 — — 一个可以灵活地模拟各实体之间更高层次关系的结构 — — 最近从不同研究领域吸引了越来越多的关注。尽管图形神经网络(GNNS)在图形演示学习方面取得了成功,但如何将强大的GNN变异器直接改造为高光学仍是一个具有挑战性的问题。在本文中,我们提议 UniGNNN(UniGNNN)是一个在图形和高光学网络中解释信息传递过程的统一框架,它可以将一般GNN模型推广到高光学分类中。在这个框架内,旨在深化GNNNN的精心设计的架构也可以以最少的努力纳入高光学。{已经进行了广泛的实验,以展示UNNNNNN在多个真实世界数据集上的有效性,这些数据集大大超越了最新的方法。特别是在DBLP数据集中,我们将半超超超高光学超高光学分类任务中的信息传递模型的精确度从77.4 ⁇ 增加到88.8 ⁇ 。我们提议的UGNNNNNNNNM模型作为一维G通用通用G(I-G)通用G(I-G)通用G)的GSUDOLG(G)非GGGGGGG)GGG(G)G)G(OVAL-ODOLL)G(ODLIG)G)G(ODLLLLL)G)G(ODG)系统非GG)G(ODOLG)系统定义定义。在1-G(OG)上最强大的非GGGGGGGGGNSGDGGGGGG)上最强的不具有最强的GGGG(ODLDLDLDLDLDG(ODLDLDL)术语。