Hypergraph, an expressive structure with flexibility to model the higher-order correlations among entities, has recently attracted increasing attention from various research domains. Despite the success of Graph Neural Networks (GNNs) for graph representation learning, how to adapt the powerful GNN-variants directly into hypergraphs remains a challenging problem. In this paper, we propose UniGNN, a unified framework for interpreting the message passing process in graph and hypergraph neural networks, which can generalize general GNN models into hypergraphs. In this framework, meticulously-designed architectures aiming to deepen GNNs can also be incorporated into hypergraphs with the least effort. Extensive experiments have been conducted to demonstrate the effectiveness of UniGNN on multiple real-world datasets, which outperform the state-of-the-art approaches with a large margin. Especially for the DBLP dataset, we increase the accuracy from 77.4\% to 88.8\% in the semi-supervised hypernode classification task. We further prove that the proposed message-passing based UniGNN models are at most as powerful as the 1-dimensional Generalized Weisfeiler-Leman (1-GWL) algorithm in terms of distinguishing non-isomorphic hypergraphs. Our code is available at \url{https://github.com/OneForward/UniGNN}.


翻译:具有灵活性的显微图结构 — — 一个可以灵活地模拟各实体之间更高层次关系的结构 — — 最近从不同研究领域吸引了越来越多的关注。尽管图形神经网络(GNNS)在图形演示学习方面取得了成功,但如何将强大的GNN变异器直接改造为高光学仍是一个具有挑战性的问题。在本文中,我们提议 UniGNNN(UniGNNN)是一个在图形和高光学网络中解释信息传递过程的统一框架,它可以将一般GNN模型推广到高光学分类中。在这个框架内,旨在深化GNNNN的精心设计的架构也可以以最少的努力纳入高光学。{已经进行了广泛的实验,以展示UNNNNNN在多个真实世界数据集上的有效性,这些数据集大大超越了最新的方法。特别是在DBLP数据集中,我们将半超超超高光学超高光学分类任务中的信息传递模型的精确度从77.4 ⁇ 增加到88.8 ⁇ 。我们提议的UGNNNNNNNNM模型作为一维G通用通用G(I-G)通用G(I-G)通用G)的GSUDOLG(G)非GGGGGGG)GGG(G)G)G(OVAL-ODOLL)G(ODLIG)G)G(ODLLLLL)G)G(ODG)系统非GG)G(ODOLG)系统定义定义。在1-G(OG)上最强大的非GGGGGGGGGNSGDGGGGGG)上最强的不具有最强的GGGG(ODLDLDLDLDLDG(ODLDLDL)术语。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
183+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员