While common image object detection tasks focus on bounding boxes or segmentation masks as object representations, we consider the problem of finding objects based on four arbitrary vertices. We propose a novel model, named TetraPackNet, to tackle this problem. TetraPackNet is based on CornerNet and uses similar algorithms and ideas. It is designated for applications requiring high-accuracy detection of regularly shaped objects, which is the case in the logistics use-case of packaging structure recognition. We evaluate our model on our specific real-world dataset for this use-case. Baselined against a previous solution, consisting of a Mask R-CNN model and suitable post-processing steps, TetraPackNet achieves superior results (9% higher in accuracy) in the sub-task of four-corner based transport unit side detection.
翻译:虽然普通图像物体探测任务侧重于以捆绑框或分离面罩作为物体表示,但我们认为根据四个任意的脊椎寻找物体的问题。我们提议了一个名为TetraPackNet的新模型来解决这个问题。TetraPackNet以CornerNet为基础,使用类似的算法和想法。它被指定用于需要高精确度探测固定形状物体的应用,这在包装结构识别的物流使用案例中就属于这种情况。我们评估了我们用于此使用案例的具体真实世界数据集的模型。根据以前的一种解决办法,包括一个Mask R-CNN模型和适当的后处理步骤,TetraPackNet在四角运输装置侧探测的子任务中取得了优异的结果(精确度提高9% )。