Classification and regression are two pillars of object detectors. In most CNN-based detectors, these two pillars are optimized independently. Without direct interactions between them, the classification loss and the regression loss can not be optimized synchronously toward the optimal direction in the training phase. This clearly leads to lots of inconsistent predictions with high classification score but low localization accuracy or low classification score but high localization accuracy in the inference phase, especially for the objects of irregular shape and occlusion, which severely hurts the detection performance of existing detectors after NMS. To reconcile prediction consistency for balanced object detection, we propose a Harmonic loss to harmonize the optimization of classification branch and localization branch. The Harmonic loss enables these two branches to supervise and promote each other during training, thereby producing consistent predictions with high co-occurrence of top classification and localization in the inference phase. Furthermore, in order to prevent the localization loss from being dominated by outliers during training phase, a Harmonic IoU loss is proposed to harmonize the weight of the localization loss of different IoU-level samples. Comprehensive experiments on benchmarks PASCAL VOC and MS COCO demonstrate the generality and effectiveness of our model for facilitating existing object detectors to state-of-the-art accuracy.


翻译:在大多数有线电视新闻网的探测器中,这两个支柱是独立优化的。如果没有它们之间的直接互动,分类损失和回归损失就无法同步优化,朝培训阶段的最佳方向发展。这显然导致在推断阶段出现许多不一致的预测,包括高分类分、低本地化精确度或低分类分数,但在推断阶段,特别是在异常形状和隔离的物体中,地方化的精确度很高,严重伤害了NMS之后现有探测器的探测性能。为了调和平衡对象探测的预测一致性,我们提议了协调损失,以协调分类分支和地方化分支的优化。协调损失使这两个分支能够在培训阶段相互监督和促进,从而产生在引力阶段最高分类和本地化高度共生的一致预测。此外,为了防止本地化损失在培训阶段被外端控制,为了调和不同IOU级样品本地化损失的重量,我们提出了调和IOU级样品局部化损失的重量。关于BASALOC和MS CO 探测器的精确度的全面实验,用以测量我们现有模型的精确度。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
图像分割方法综述
专知会员服务
56+阅读 · 2020年11月22日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
已删除
将门创投
7+阅读 · 2020年3月13日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Arxiv
12+阅读 · 2021年6月21日
Frustratingly Simple Few-Shot Object Detection
Arxiv
3+阅读 · 2020年3月16日
Arxiv
11+阅读 · 2019年4月15日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
图像分割方法综述
专知会员服务
56+阅读 · 2020年11月22日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
相关资讯
已删除
将门创投
7+阅读 · 2020年3月13日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2021年6月21日
Frustratingly Simple Few-Shot Object Detection
Arxiv
3+阅读 · 2020年3月16日
Arxiv
11+阅读 · 2019年4月15日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
4+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员