Detecting online sexual predatory behaviours and abusive language on social media platforms has become a critical area of research due to the growing concerns about online safety, especially for vulnerable populations such as children and adolescents. Researchers have been exploring various techniques and approaches to develop effective detection systems that can identify and mitigate these risks. Recent development of large language models (LLMs) has opened a new opportunity to address this problem more effectively. This paper proposes an approach to detection of online sexual predatory chats and abusive language using the open-source pretrained Llama 2 7B-parameter model, recently released by Meta GenAI. We fine-tune the LLM using datasets with different sizes, imbalance degrees, and languages (i.e., English, Roman Urdu and Urdu). Based on the power of LLMs, our approach is generic and automated without a manual search for a synergy between feature extraction and classifier design steps like conventional methods in this domain. Experimental results show a strong performance of the proposed approach, which performs proficiently and consistently across three distinct datasets with five sets of experiments. This study's outcomes indicate that the proposed method can be implemented in real-world applications (even with non-English languages) for flagging sexual predators, offensive or toxic content, hate speech, and discriminatory language in online discussions and comments to maintain respectful internet or digital communities. Furthermore, it can be employed for solving text classification problems with other potential applications such as sentiment analysis, spam and phishing detection, sorting legal documents, fake news detection, language identification, user intent recognition, text-based product categorization, medical record analysis, and resume screening.
翻译:暂无翻译