We introduce a family of local inhomogeneous mark-weighted summary statistics, of order two and higher, for general marked point processes. Depending on how the involved weight function is specified, these summary statistics capture different kinds of local dependence structures. We first derive some basic properties and show how these new statistical tools can be used to construct most existing summary statistics for (marked) point processes. We then propose a local test of random labelling. This procedure allows us to identify points, and consequently regions, where the random labelling assumption does not hold, e.g.~when the (functional) marks are spatially dependent. Through a simulation study we show that the test is able to detect local deviations from random labelling. We also provide an application to an earthquake point pattern with functional marks given by seismic waveforms.
翻译:我们为一般标记过程引入了一组当地无异的标记加权汇总统计,按顺序二或以上排列,以用于一般标记过程。根据所涉重量函数的指定方式,这些汇总统计可以捕捉不同种类的当地依赖结构。我们首先得出一些基本属性,并展示这些新的统计工具如何用来构建(标记)点过程的大多数现有汇总统计。然后我们提议对随机标签进行局部测试。这个程序允许我们确定随机标签假设不起作用的点,以及随后区域,例如:~(功能)标记在空间上依赖的时候。我们通过模拟研究显示,测试能够检测到本地随机标签的偏差。我们还为地震点提供了一种应用模式,其中带有地震波形提供的功能标志。