Place recognition is an important capability for autonomously navigating vehicles operating in complex environments and under changing conditions. It is a key component for tasks such as loop closing in SLAM or global localization. In this paper, we address the problem of place recognition based on 3D LiDAR scans recorded by an autonomous vehicle. We propose a novel lightweight neural network exploiting the range image representation of LiDAR sensors to achieve fast execution with less than 2 ms per frame. We design a yaw-angle-invariant architecture exploiting a transformer network, which boosts the place recognition performance of our method. We evaluate our approach on the KITTI and Ford Campus datasets. The experimental results show that our method can effectively detect loop closures compared to the state-of-the-art methods and generalizes well across different environments. To evaluate long-term place recognition performance, we provide a novel dataset containing LiDAR sequences recorded by a mobile robot in repetitive places at different times. The implementation of our method and dataset are released here: https://github.com/haomo-ai/OverlapTransformer
翻译:重叠Transformer:一种高效的且旋转不变的LiDAR基于位置识别的Transformer网络
Translated abstract:
本文主要针对自动驾驶车辆领域中的位置识别问题。该问题是SLAM中的一个重要组成部分,对于路线闭合和全局定位等任务至关重要。我们提出了一种使用3D LiDAR扫描生成的距离图像表示的新颖轻量级神经网络,其每帧执行速度小于2毫秒。我们设计了一种适用于偏航角不变性的架构,该架构利用Transformer网络提高了我们的位置识别性能。我们在KITTI和Ford Campus数据集上评估了我们的方法。实验结果表明,相比于现有方法,我们的方法可以有效地检测到路线闭合,并且在不同环境中具有很好的泛化性能。为了评估长期的位置识别性能,我们提供了一个新的数据集,其中包含由移动机器人在不同时间记录的重复位置的LiDAR序列。我们在此处公布我们的方法和数据集的实现:https://github.com/haomo-ai/OverlapTransformer