Background: Virtual reality simulators and machine learning have the potential to augment understanding, assessment and training of psychomotor performance in neurosurgery residents. Objective: This study outlines the first application of machine learning to distinguish "skilled" and "novice" psychomotor performance during a virtual reality neurosurgical task. Methods: Twenty-three neurosurgeons and senior neurosurgery residents comprising the "skilled" group and 92 junior neurosurgery residents and medical students the "novice" group. The task involved removing a series of virtual brain tumors without causing injury to surrounding tissue. Over 100 features were extracted and 68 selected using t-test analysis. These features were provided to 4 classifiers: K-Nearest Neighbors, Parzen Window, Support Vector Machine, and Fuzzy K-Nearest Neighbors. Equal Error Rate was used to assess classifier performance. Results: Ratios of train set size to test set size from 10% to 90% and 5 to 30 features, chosen by the forward feature selection algorithm, were employed. A working point of 50% train to test set size ratio and 15 features resulted in an equal error rates as low as 8.3% using the Fuzzy K-Nearest Neighbors classifier. Conclusion: Machine learning may be one component helping realign the traditional apprenticeship educational paradigm to a more objective model based on proven performance standards. Keywords: Artificial intelligence, Classifiers, Machine learning, Neurosurgery skill assessment, Surgical education, Tumor resection, Virtual reality simulation


翻译:虚拟现实模拟器和机器学习有可能增进对神经外科居民精神运动表现的理解、评估和训练。 目标 : 本研究概述了在虚拟现实神经外科任务中首次应用机器学习来区分“ 熟练”和“创新”精神运动表演的“技术”和“创新”精神运动表演。 方法 : 23个神经外科医生和高级神经外科居民以及由“ 熟练” 组和92个初级神经外科居民和医科学生组成的“创新”组。 任务涉及删除一系列虚拟脑肿瘤,但不对周围组织造成伤害。 通过测试分析提取了100多个功能,68个以上功能。 这些功能提供给了4个分类: K- Nearest Neighbors、 Parzen 窗口、 支持Victorictors 和 Fuzzy K- Nearest Nearest Niestrual Ristrual 。 标准: 10- 90 和 和 5- 30个功能测试模型,由前方特征选择算算算法, 采用了50 % 的虚拟虚拟虚拟虚拟虚拟虚拟脑肿瘤模拟虚拟虚拟虚拟虚拟模拟模拟模拟模拟模拟模拟模拟模拟变校程,, 标准, 和15 。 标准, : 以学习等级变数级的学习变校校为等级, 。

0
下载
关闭预览

相关内容

【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
45+阅读 · 2019年12月20日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员