We study reinforcement learning with linear function approximation where the transition probability and reward functions are linear with respect to a feature mapping $\boldsymbol{\phi}(s,a)$. Specifically, we consider the episodic inhomogeneous linear Markov Decision Process (MDP), and propose a novel computation-efficient algorithm, LSVI-UCB$^+$, which achieves an $\widetilde{O}(Hd\sqrt{T})$ regret bound where $H$ is the episode length, $d$ is the feature dimension, and $T$ is the number of steps. LSVI-UCB$^+$ builds on weighted ridge regression and upper confidence value iteration with a Bernstein-type exploration bonus. Our statistical results are obtained with novel analytical tools, including a new Bernstein self-normalized bound with conservatism on elliptical potentials, and refined analysis of the correction term. To the best of our knowledge, this is the first minimax optimal algorithm for linear MDPs up to logarithmic factors, which closes the $\sqrt{Hd}$ gap between the best known upper bound of $\widetilde{O}(\sqrt{H^3d^3T})$ in \cite{jin2020provably} and lower bound of $\Omega(Hd\sqrt{T})$ for linear MDPs.


翻译:我们研究以线性函数近似值加强学习, 过渡概率和奖励功能在功能映射 $\ boldsymbol_phi}( a) 方面是线性 。 具体地说, 我们考虑单数异异异异异异线性线性Markov 决策程序( MDP ), 并提出一种新的计算效率算法( LSVI- UBBB$ $ $ ), 实现 $( 全方位=O}( Hd\ sqrt{T} ) 的自我调整, 对修正术语进行精细化分析。 据我们所知, 这是用于直线式 MDP 直至对数数数的首个微微最佳算法 。 LSVI- UCB$ 和高置信度值以Bernstein型勘探奖赏( MSVI- Urt_H} 以新的分析工具获得我们的统计结果, 包括一个新的伯恩斯坦自我调整, 套套套套在 $\\\\\\ rq} MRC} 美元中, 最深的里端的 3xxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
67+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
54+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月11日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
67+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
54+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员