Like most multiobjective combinatorial optimization problems, biobjective optimization problems on matroids are in general intractable and their corresponding decision problems are in general NP-hard. In this paper, we consider biobjective optimization problems on matroids where one of the objective functions is restricted to binary cost coefficients. We show that in this case the problem has a connected efficient set with respect to a natural definition of a neighborhood structure and hence, can be solved efficiently using a neighborhood search approach. This is, to the best of our knowledge, the first non-trivial problem on matroids where connectedness of the efficient set can be established. The theoretical results are validated by numerical experiments with biobjective minimum spanning tree problems (graphic matroids) and with biobjective knapsack problems with a cardinality constraint (uniform matroids). In the context of the minimum spanning tree problem, coloring all edges with cost 0 green and all edges with cost 1 red leads to an equivalent problem where we want to simultaneously minimize one general objective and the number of red edges (which defines the second objective) in a Pareto sense.


翻译:与大多数多目标组合优化问题一样,对机器人的双目标优化问题一般难以解决,相应的决定问题一般都是NP-硬性。在本文中,我们考虑了对机器人的双目标优化问题,其中一项目标功能仅限于二元成本系数。我们表明,在这种情况下,问题与邻里结构的自然定义有着联系,因此,可以使用邻里搜索方法有效解决。据我们所知,这是在可确定高效组合关联性的第一个非三边性问题。理论结果通过两个目标的最低横跨树种问题(成形型机器人)和具有基点限制(单形假人)的双目标Knapsack问题的数字实验得到验证。在最小横跨树木问题的背景下,用成本为0绿色和成本为1红色的所有边缘来标注所有边缘的颜色,到一个我们想同时将一个总目标和红边缘(界定第二个目标)数量在帕雷托意义上的类似问题。

0
下载
关闭预览

相关内容

专知会员服务
85+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
心之所向的无尽蓝,vivo S12 Pro「屿蓝」
ZEALER订阅号
0+阅读 · 2022年1月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
心之所向的无尽蓝,vivo S12 Pro「屿蓝」
ZEALER订阅号
0+阅读 · 2022年1月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员