Multirate integration uses different time step sizes for different components of the solution based on the respective transient behavior. For inter/extrapolation-based multirate schemes, we construct a new subclass of schemes by using clamped cubic splines to obtain multirate schemes up to order 4. Numerical results for a $n$-mass-oscillator demonstrate that 4th order of convergence can be achieved for this class of schemes.
翻译:多子集成对基于各自瞬态行为的解决方案的不同组成部分使用不同的时间步骤大小。 对于基于内部/外推的多率计划,我们通过使用夹紧的立方螺丝来构建一个新的子组合组合,以获得直至第4级的多率计划。 美元-马斯-振荡器的数值结果表明,对于这一类计划,可以达到第四级的趋同。