We present a model of the self-calibration of active binocular vision comprising the simultaneous learning of visual representations, vergence, and pursuit eye movements. The model follows the principle of Active Efficient Coding (AEC), a recent extension of the classic Efficient Coding Hypothesis to active perception. In contrast to previous AEC models, the present model uses deep autoencoders to learn sensory representations. We also propose a new formulation of the intrinsic motivation signal that guides the learning of behavior. We demonstrate the performance of the model in simulations.
翻译:我们提出了一个主动望远镜视觉自我校准模型,包括同时学习视觉表现、边缘和眼睛运动,该模型遵循了主动高效编码原则,这是经典有效编码假设最近延伸至积极认知的典型有效编码假设,与以往的自动编码模型不同,目前的模型使用深自动编码器学习感官表现。我们还提出了指导行为学习的内在动力信号的新提法。我们在模拟中展示模型的性能。