We study the complexity of affine Unique-Games (UG) over globally hypercontractive graphs, which are graphs that are not small set expanders but admit a useful and succinct characterization of all small sets that violate the small-set expansion property. This class of graphs includes the Johnson and Grassmann graphs, which have played a pivotal role in recent PCP constructions for UG, and their generalizations via high-dimensional expanders. Our algorithm shows how to round "low-entropy" solutions to sum-of-squares (SoS) semidefinite programs, broadly extending the algorithmic framework of [BBKSS'21]. We give a new rounding scheme for SoS, which eliminates global correlations in a given pseudodistribution so that it retains various good properties even after conditioning. Getting structural control over a pseudodistribution after conditioning is a fundamental challenge in many SoS based algorithms. Due to these challenges, [BBKSS] were not able to establish strong algorithms for globally hypercontractive graphs, and could only do so for certifiable small-set expanders. Our results improve upon the results of [BBKSS] in various aspects: we are able to deal with instances with arbitrarily small (but constant) completeness, and most importantly, their algorithm gets a soundness guarantee that degrades with other parameters of the graph (which in all PCP constructions grow with the alphabet size), whereas our doesn't. Our result suggests that UG is easy on globally hypercontractive graphs, and therefore highlights the importance of graphs that lack such a characterization in the context of PCP reductions for UG.


翻译:我们研究全局超收缩图上仿射唯一游戏(UG)的复杂性,这些图不是小集合扩展者,但却展示了违反小集合扩展性质的所有小集合的有用而简洁的特征。这类图包括约翰逊图和格拉斯曼图,它们在最近的唯一游戏PCP构造中扮演了重要角色,以及它们通过高维扩展器的推广。我们的算法展示了如何对“低熵”解进行sum-of-squares(SoS)半正定程序圆整,广泛扩展了[BBKSS'21]的算法框架。我们给出了一种新的SoS圆整方案,它消除了给定伪分布中的全局相关性,使其在条件化后仍保留各种良好性质。在条件化后获得伪分布的结构控制是许多基于SoS的算法面临的基本挑战。由于这些挑战,[BBKSS]无法为全局超收缩图建立强大的算法,只能为可证明的小集合扩展者做到这一点。我们的结果在各个方面都改进了[BBKSS]的结果:我们能够处理具有任意小(但恒定的)完成度的实例,最重要的是,他们的算法获得了一个声音保证,但随着图的其他参数(在所有PCP构造中都会随着字母表大小增长)而恶化,而我们的算法则没有。我们的结果表明,在全局超收缩图上,唯一游戏是容易解决的,因此凸显了在PCP约减中缺乏这种特征描述的图的重要性。

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
74+阅读 · 2022年4月15日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
【视频】几何数据嵌入表示学习,74页ppt
专知会员服务
33+阅读 · 2020年7月24日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员