This paper presents a new approach for 3D shape generation, enabling direct generative modeling on a continuous implicit representation in wavelet domain. Specifically, we propose a compact wavelet representation with a pair of coarse and detail coefficient volumes to implicitly represent 3D shapes via truncated signed distance functions and multi-scale biorthogonal wavelets, and formulate a pair of neural networks: a generator based on the diffusion model to produce diverse shapes in the form of coarse coefficient volumes; and a detail predictor to further produce compatible detail coefficient volumes for enriching the generated shapes with fine structures and details. Both quantitative and qualitative experimental results manifest the superiority of our approach in generating diverse and high-quality shapes with complex topology and structures, clean surfaces, and fine details, exceeding the 3D generation capabilities of the state-of-the-art models.
翻译:本文介绍了3D形状生成的新方法,使得能够在波盘域连续隐含的表达面上建立直接的基因模型。 具体地说,我们建议采用一对粗略和细微的系数体积的紧凑波子表示法,通过短短的签名距离函数和多尺度双角波子,暗含3D形状,并开发一对神经网络:一种基于扩散模型的生成器,以粗略系数体积的形式产生不同的形状;以及一种详细预测器,以进一步生成兼容的详细系数体积,用精细的结构和细节来丰富生成的形状。定量和定性实验结果都表明,我们在生成复杂地形和结构、清洁表面和精细的多样化和高质量形状,超过最新模型的3D生成能力方面的优势。