Text-only adaptation of an end-to-end (E2E) model remains a challenging task for automatic speech recognition (ASR). Language model (LM) fusion-based approaches require an additional external LM during inference, significantly increasing the computation cost. To overcome this, we propose an internal LM adaptation (ILMA) of the E2E model using text-only data. Trained with audio-transcript pairs, an E2E model implicitly learns an internal LM that characterizes the token sequence probability which is approximated by the E2E model output after zeroing out the encoder contribution. During ILMA, we fine-tune the internal LM, i.e., the E2E components excluding the encoder, to minimize a cross-entropy loss. To make ILMA effective, it is essential to train the E2E model with an internal LM loss besides the standard E2E loss. Furthermore, we propose to regularize ILMA by minimizing the Kullback-Leibler divergence between the output distributions of the adapted and unadapted internal LMs. ILMA is the most effective when we update only the last linear layer of the joint network. ILMA enables a fast text-only adaptation of the E2E model without increasing the run-time computational cost. Experimented with 30K-hour trained transformer transducer models, ILMA achieves up to 34.9% relative word error rate reduction from the unadapted baseline.


翻译:语言模型(LM)融合法要求在推断期间增加外部 LM, 即不包括编码器的 E2E 组件, 以最大限度地减少跨编程损失。 要克服这一点, 我们提议使用仅文本数据对 E2E 模型进行内部LM 调整(ILMA) 。 使用音频- 平面配对培训, E2E 模型隐含地学习了内部LM, 象征序列概率的特征是E2E 模型输出在去除编码器贡献后所近似于 E2E 模型的数值。 在 ILMA 期间,我们微调内部 LM, 即不包括编码器的 E2E2 E2 E 组件, 以最大限度地减少跨编程损失。 要使 I2EMA 模型与标准 E2E2E 损失相比, 以内部LM 损失来培训内部LM 。 此外,我们提议通过尽可能减少 Kullback- Lebell 错误, 将调制的IMA 和未调制的IMs 的不适应的缩略图型模型之间的输出差。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员