Consider a collection of datasets generated by unknown interventions on an unknown structural causal model $G$. Recently, Bengio et al. (2020) conjectured that among all candidate models, $G$ is the fastest to adapt from one dataset to another, along with promising experiments. Indeed, intuitively $G$ has less mechanisms to adapt, but this justification is incomplete. Our contribution is a more thorough analysis of this hypothesis. We investigate the adaptation speed of cause-effect SCMs. Using convergence rates from stochastic optimization, we justify that a relevant proxy for adaptation speed is distance in parameter space after intervention. Applying this proxy to categorical and normal cause-effect models, we show two results. When the intervention is on the cause variable, the SCM with the correct causal direction is advantaged by a large factor. When the intervention is on the effect variable, we characterize the relative adaptation speed. Surprisingly, we find situations where the anticausal model is advantaged, falsifying the initial hypothesis. Code to reproduce experiments is available at https://github.com/remilepriol/causal-adaptation-speed
翻译:考虑对未知结构性因果模型的未知干预所产生的数据集。 最近,Bengio等人(2020年)预测,在所有候选模型中,美元是从一个数据集适应另一个数据集最快的,再加上有希望的实验。事实上,直觉的美元有较少的适应机制,但这一理由并不完全。我们的贡献是对这个假设的更透彻的分析。我们调查了造成效应的SCM的适应速度。我们使用随机优化的趋同率,证明适应速度的相关代用是干预后参数空间的距离。将这一代用方法应用到绝对和正常因果模型,我们展示了两种结果。当干预在原因变量上时,具有正确因果方向的SCM被一个大因素所利用。当干预在效果变量上时,我们用相对适应速度来描述。令人惊讶的是,我们发现反动模型在哪些情况下处于优势,并伪造最初假设。复制实验的代码可在 https://github.com/remilpriol/causal-adapatization-sway上查阅。