Unsupervised domain adaptation (UDA) becomes more and more popular in tackling real-world problems without ground truth of the target domain. Though tedious annotation work is not required, UDA unavoidably faces two problems: 1) how to narrow the domain discrepancy to boost the transferring performance; 2) how to improve pseudo annotation producing mechanism for self-supervised learning (SSL). In this paper, we focus on UDA for semantic segmentation task. Firstly, we introduce adversarial learning into style gap bridging mechanism to keep the style information from two domains in the similar space. Secondly, to keep the balance of pseudo labels on each category, we propose a category-adaptive threshold mechanism to choose category-wise pseudo labels for SSL. The experiments are conducted using GTA5 as the source domain, Cityscapes as the target domain. The results show that our model outperforms the state-of-the-arts with a noticeable gain on cross-domain adaptation tasks.
翻译:无监督域适应(UDA)在处理现实世界问题时越来越受欢迎,而没有目标域的地面真实性。虽然不需要冗长的批注工作,但UDA不可避免地面临两个问题:(1) 如何缩小域差异以促进转让性能;(2) 如何改进自我监督学习的伪注解机制(SSL)。在本文中,我们侧重于用于语义分割任务的UDA。首先,我们引入了风格差距弥补机制,以保持同一空间的两个域的风格信息。第二,为了保持每个类别假标签的平衡,我们提议了一种类别适应性门槛机制,以选择类比的假标签。实验是以GTA5为源域,将城市景景作为目标域。结果显示,我们的模型超越了状态艺术,在交叉适应任务上取得了显著的收益。