We study the problem of observational causal inference with continuous treatments in the framework of inverse propensity-score weighting. To obtain stable weights, we design a new algorithm based on entropy balancing that learns weights to directly maximize causal inference accuracy using end-to-end optimization. In the process of optimization, these weights are automatically tuned to the specific dataset and causal inference algorithm being used. We provide a theoretical analysis demonstrating consistency of our approach. Using synthetic and real-world data, we show that our algorithm estimates causal effect more accurately than baseline entropy balancing.
翻译:我们研究了在反偏向分数加权框架内持续处理的观察因果推断问题。为了获得稳定的加权,我们设计了一种新的算法,它基于酶平衡,学习重量,以便利用端到端优化直接实现因果推断准确性最大化。在优化过程中,这些加权自动调整,以适应正在使用的具体数据集和因果推断算法。我们提供了理论分析,表明我们方法的一致性。我们使用合成数据和真实世界数据,表明我们的算法估计因果效果比基线酶平衡更准确。