This paper considers the Cauchy problem for the nonlinear dynamic string equation of Kirchhoff-type with time-varying coefficients. The objective of this work is to develop a temporal discretization algorithm capable of approximating a solution to this initial-boundary value problem. To this end, a symmetric three-layer semi-discrete scheme is employed with respect to the temporal variable, wherein the value of a nonlinear term is evaluated at the middle node point. This approach enables the numerical solutions per temporal step to be obtained by inverting the linear operators, yielding a system of second-order linear ordinary differential equations. Local convergence of the proposed scheme is established, and it achieves quadratic convergence concerning the step size of the discretization of time on the local temporal interval.
翻译:本文研究了具有时间变化系数的非线性Kirchhoff型动态弦方程的Cauchy问题。本文旨在开发一种时间离散化算法,能够逼近此初始边界值问题的解。为此,采用了针对时间变量的对称三层半离散方案,在其中非线性项的值在中间节点点处被计算。这种方法使得能够通过反演线性算子来获得每个时间步的数值解,得到一个二阶线性常微分方程组。证明了所提出的方案的局部收敛性,其时间离散化步长在局部时间间隔上实现二次收敛。