We investigate a family of bilevel imaging learning problems where the lower-level instance corresponds to a convex variational model involving first- and second-order nonsmooth sparsity-based regularizers. By using geometric properties of the primal-dual reformulation of the lower-level problem and introducing suitable auxiliar variables, we are able to reformulate the original bilevel problems as Mathematical Programs with Complementarity Constraints (MPCC). For the latter, we prove tight constraint qualification conditions (MPCC-RCPLD and partial MPCC-LICQ) and derive Mordukhovich (M-) and Strong (S-) stationarity conditions. The stationarity systems for the MPCC turn also into stationarity conditions for the original formulation. Second-order sufficient optimality conditions are derived as well, together with a local uniqueness result for stationary points. The proposed reformulation may be extended to problems in function spaces, leading to MPCC's with constraints on the gradient of the state. The MPCC reformulation also leads to the efficient use of available large-scale nonlinear programming solvers, as shown in a companion paper, where different imaging applications are studied.
翻译:本文研究了一类双层成像学习问题,其中较低层实例对应于一个包括一阶和二阶非光滑稀疏正则化器的凸变分模型。通过使用下层问题的原始-对偶重构的几何性质并引入适当的辅助变量,我们能够将原始双层问题重构为具有互补约束的数学规划(MPCC)。对于后者,我们证明了紧约束资格条件(MPCC-RCPLD和部分MPCC-LICQ)并导出了Mordukhovich(M-)和Strong(S-)稳定性条件。MPCC的稳定性系统也变成了原始制定的稳定性条件。同时导出了二阶充分最优性条件,并得出了稳定点的局部唯一性结果。所提出的重构方式可扩展到函数空间中的问题,导致带有状态梯度约束的MPCC。MPCC形式的提出也导致了大规模非线性规划求解器的高效使用,正如一篇相关的论文中所展示的,该论文研究了不同的成像应用。