Consider multiple seasonal time series being collected in real-time, in the form of a tensor stream. Real-world tensor streams often include missing entries (e.g., due to network disconnection) and at the same time unexpected outliers (e.g., due to system errors). Given such a real-world tensor stream, how can we estimate missing entries and predict future evolution accurately in real-time? In this work, we answer this question by introducing SOFIA, a robust factorization method for real-world tensor streams. In a nutshell, SOFIA smoothly and tightly integrates tensor factorization, outlier removal, and temporal-pattern detection, which naturally reinforce each other. Moreover, SOFIA integrates them in linear time, in an online manner, despite the presence of missing entries. We experimentally show that SOFIA is (a) robust and accurate: yielding up to 76% lower imputation error and 71% lower forecasting error; (b) fast: up to 935X faster than the second-most accurate competitor; and (c) scalable: scaling linearly with the number of new entries per time step.


翻译:考虑实时收集多个季节性时间序列, 以 shor 流的形式 。 真实世界的 稀疏流通常包含缺失的参数( 例如, 由于网络断开), 同时包括意外的外向( 例如, 由于系统错误 ) 。 鉴于这样的真实世界 虫流, 我们如何估算缺失的条目, 并准确预测实时的未来演变? 在这项工作中, 我们通过引入 SOFIA 来回答这个问题, SOFIA 是真实世界 Exor 流的一种稳健的系数化方法 。 简而言之, SOFIA 平稳和紧紧紧地整合了 Exlor 系数化、 外部移除 和 时间- 模式 检测, 而这些元素自然会相互强化 。 此外, SOFIA 以线性方式在线性时间上整合它们, 尽管有缺失的条目存在 。 我们实验性地显示 SOFIA 是 (a) 强大和准确的: 产生高达 76% 的浸透误 和 71% 的预报错误 ; (b) 快速 : : 至 935X 速度比第二 最精确的相匹配的相匹配的 ; ; (c) 可缩缩缩缩 : 时间: : 直线性: 每步骤: 每步 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员