In this paper we study the problem of efficiently factorizing polynomials in the free noncommutative ring F<x_1,x_2,...,x_n> of polynomials in noncommuting variables x_1,x_2,..., x_n over the field F. We obtain the following result: Given a noncommutative arithmetic formula of size s computing a noncommutative polynomial f in F<x_1,x_2,...,x_n> as input, where F=F_q is a finite field, we give a randomized algorithm that runs in time polynomial in s, n and log q that computes a factorization of f as a product f=f_1f_2\cdots f_r, where each f_i is an irreducible polynomial that is output as a noncommutative algebraic branching program. The algorithm works by first transforming f into a linear matrix L using Higman's linearization of polynomials. We then factorize the linear matrix L and recover the factorization of f. We use basic elements from Cohn's theory of free ideals rings combined with Ronyai's randomized polynomial-time algorithm for computing invariant subspaces of a collection of matrices over finite fields.
翻译:在本文中,我们研究了在F <x_1,x_2,...x_n>自由非对称环 F <x_1,x_2,...,x_n> 中,在非对称变量 x_1,x_2,...,x_n在字段F 中,将多元数值有效乘数化的问题。我们取得了以下结果:鉴于在F <x_1,x_2,...x_n> 中,计算非对称多数值的大小的非对称算公式,在F <x_1,x_2,......x_n> 输入,F=F_q是一个有限字段,我们给出了一种随机算法算法,在 s, n和log q 中,将f的因数化系数化成 f作为产品 f=_1,x_1,x_x_2,xxxxx_,xx_n。我们得到了以下结果:在F <x_i 计算法工作,首先使用Higman's的线性矩阵线性矩阵是一个有限域域,然后将线性矩阵矩阵数数,我们用Fral-hinal-hisalalalimalimalimalimalbly orizmorizmlal orizals orizmusmusalizalizals coals orizm coalbalizm coalizalizalizalizalizals, coalizalizalizals.