Language data and models demonstrate various types of bias, be it ethnic, religious, gender, or socioeconomic. AI/NLP models, when trained on the racially biased dataset, AI/NLP models instigate poor model explainability, influence user experience during decision making and thus further magnifies societal biases, raising profound ethical implications for society. The motivation of the study is to investigate how AI systems imbibe bias from data and produce unexplainable discriminatory outcomes and influence an individual's articulateness of system outcome due to the presence of racial bias features in datasets. The design of the experiment involves studying the counterfactual impact of racial bias features present in language datasets and its associated effect on the model outcome. A mixed research methodology is adopted to investigate the cross implication of biased model outcome on user experience, effect on decision-making through controlled lab experimentation. The findings provide foundation support for correlating the implication of carry-over an artificial intelligence model solving NLP task due to biased concept presented in the dataset. Further, the research outcomes justify the negative influence on users' persuasiveness that leads to alter the decision-making quotient of an individual when trying to rely on the model outcome to act. The paper bridges the gap across the harm caused in establishing poor customer trustworthiness due to an inequitable system design and provides strong support for researchers, policymakers, and data scientists to build responsible AI frameworks within organizations.


翻译:语言数据和模型显示了各种类型的偏见,无论是种族、宗教、性别还是社会经济的偏见。AI/NLP模型,如果在种族偏见数据集方面受过培训,AI/NLP模型就会导致模型解释不善,影响用户在决策过程中的经验,从而进一步扩大社会偏见,从而产生深刻的社会道德影响。研究的动机是调查AI系统如何从数据中产生偏见,产生无法解释的歧视结果,并影响个人对系统结果的清晰度,因为数据集中存在种族偏见特征。实验的设计涉及研究语言数据集中存在的种族偏见特征的反现实影响及其对模型结果的相关影响。采用了一种混合的研究方法,以调查偏见模型结果对用户经验的交叉影响,从而通过受控制的实验室实验实验对决策产生影响。研究结果为将人工智能模型用于解决NLP任务的含义联系起来提供了基础支持,因为数据集中存在偏差概念。此外,研究结果证明用户的说服力对用户的负面影响导致改变个人在语言数据集中对模型及相关对模型结果的影响。在试图建立稳健的客户设计框架时,为建立稳健的判断力的决策者行为提供了基础。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月25日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员