This paper establishes optimal approximation error characterization of deep ReLU networks for smooth functions in terms of both width and depth simultaneously. To that end, we first prove that multivariate polynomials can be approximated by deep ReLU networks of width $\mathcal{O}(N)$ and depth $\mathcal{O}(L)$ with an approximation error $\mathcal{O}(N^{-L})$. Through local Taylor expansions and their deep ReLU network approximations, we show that deep ReLU networks of width $\mathcal{O}(N\ln N)$ and depth $\mathcal{O}(L\ln L)$ can approximate $f\in C^s([0,1]^d)$ with a nearly optimal approximation rate $\mathcal{O}(\|f\|_{C^s([0,1]^d)}N^{-2s/d}L^{-2s/d})$. Our estimate is non-asymptotic in the sense that it is valid for arbitrary width and depth specified by $N\in\mathbb{N}^+$ and $L\in\mathbb{N}^+$, respectively.


翻译:本文同时为宽度和深度平滑功能的深 ReLU 网络设置最佳近似错误描述。 为此, 我们首先证明, 宽度为$\ mathcal{ O}( N) $ 和深度为$\ mathcal{ O} (L) 的深 ReLU 网络可以同时为宽度和深度的平滑函数设定最佳近似错误描述。 我们通过本地的 Taylor 扩张及其深重的 ReLU 网络近似, 我们显示, 宽度为$\ mathcal{ O} (N\ ln N) 和深度的深RELU 网络 $\ mathcal{ O} (L\ ln) $( l\ l) $( [0, 1\ d) 美元和深度为 $\\ mathc{ n\\\ ma} 我们的估计是非静态的, 因为它对任意宽度和深度有效, $\\\ n\\\ n\\\\\ lex n} 美元 具体指定为$\\\\\\ n\ n\ n\ n\ n\\\\\ n\ n\\\\\\\\\\\\\\ n\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
深度学习自然语言处理综述,266篇参考文献
专知会员服务
229+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员